
- 時間:2023-11-12 03:32:39
- 小編:
- 文件格式 DOC


時光荏苒,歲月如梭,在不經(jīng)意間我們已經(jīng)走過了很遠的路。培養(yǎng)良好的寫作習(xí)慣,如定期練習(xí)、反思和修改,以不斷提高自己的寫作水平。時間管理是一門學(xué)問,接下來小編為大家分享一些心得和經(jīng)驗。
人工智能的體會心得篇一
今天是我研究人工智能的第一堂課,也是我上大學(xué)以來第一次接觸人工智能這門課,通過老師的講解,我對人工智能有了一些簡單的感性認識,我知道了人工智能從誕生,發(fā)展到今天經(jīng)歷一個漫長的過程,許多人為此做出了不懈的努力。我覺得這門課真的是一門富有挑戰(zhàn)性的科學(xué),而從事這項工作的人不僅要懂得計算機知識,還必須懂得心理學(xué)和哲學(xué)。
機器翻譯系統(tǒng)我們可以很方便的完成一些語言翻譯工作。目前,國內(nèi)的機器翻譯軟件有很多,富有代表性意義的當(dāng)屬“金山詞霸”,它可以迅速的查詢英文單詞和詞組句子翻譯,重要的是它還可以提供發(fā)音功能,為用戶提供了極大的方便。
人工智能的體會心得篇二
所謂人工智能,是研發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用的一門新的技術(shù)科學(xué)。它是計算機科學(xué)的一個分支,企圖憑借了解智能的實質(zhì)來生產(chǎn)出一個類似于人類智能對事情做出反應(yīng)的智能機器,該領(lǐng)域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等方面。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴大,可以設(shè)想,未來人工智能帶來的科研成果,將會是人類智慧的體現(xiàn)。人工智能可以對人的意識、思維的信息過程的模擬。人工智能指的是雖然不是人的智能,但能像人那樣思考、也可能通過發(fā)展演變成超過人的智能。
人工智能是研究使計算機來模擬人的某些思維過程和智能行為,比如學(xué)習(xí)、推理、思考、規(guī)劃等方式,主要包括通過計算機實現(xiàn)智能的原理或者制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應(yīng)用。人工智能涉及計算機科學(xué)、心理學(xué)、哲學(xué)和語言學(xué)等多門學(xué)科,其范圍已遠遠超出了計算機科學(xué)的范疇,成為一門綜合學(xué)科。人工智能與思維科學(xué)的關(guān)系是實踐和理論的關(guān)系,人工智能是處于思維科學(xué)的技術(shù)應(yīng)用層次,是它的一個應(yīng)用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象、靈感思維才能促進人工智能的突破性的發(fā)展。數(shù)學(xué)常被認為是多種學(xué)科的基礎(chǔ)科學(xué),數(shù)學(xué)也進入語言、思維領(lǐng)域,人工智能學(xué)科也必須借用數(shù)學(xué)工具。數(shù)學(xué)進入人工智能學(xué)科,它們將互相促進而更快地發(fā)展。數(shù)學(xué)給予人工智能學(xué)科計算方法和邏輯思維,人工智能學(xué)科給數(shù)學(xué)計算和發(fā)展提供了可靠的未來。
人工智能就其本質(zhì)而言,是對人的思維的信息過程的模擬。對于人的思維模擬可以從兩條道路進行:一是結(jié)構(gòu)模擬,仿照人腦的結(jié)構(gòu)機制,制造出類似人腦一樣思考方式的.機器;二是功能模擬,暫時撇開人腦的內(nèi)部結(jié)構(gòu),而從其功能過程進行模擬思考。現(xiàn)代電子計算機的產(chǎn)生便是對人腦思維功能的模擬,是在對人腦思維的信息過程的模擬過程中產(chǎn)生的。人工智能的起源最早要從1955年的一個叫做學(xué)習(xí)機討論會的小會開始,然后就是公認的1956年達特茅斯會議,這是人工智能史上最重要的里程碑,被公認為人工智能之開始。達特茅斯會議中的討論預(yù)示了人工智能隨后幾十年關(guān)于“結(jié)構(gòu)與功能”兩個階級,兩條路線的斗爭。他們討論著一個主題:用機器來模仿人類學(xué)習(xí)以及其他方面的智能。他們公布了的“邏輯理論家”是當(dāng)時唯一可以工作的人工智能軟件,引起了會議代表極大的興趣與關(guān)注。會議的召集人麥卡錫給這個活動起了個別出心裁的名字:人工智能夏季研討會。這是人工智能一詞正式在學(xué)術(shù)會議中亮相,而1956年也就成為了人工智能元年。雖然之后一段時間內(nèi)對人工智能并沒有大規(guī)模投入資金和大量科研人員,但是毋庸置疑的打開了新發(fā)展的大門,為后來的道路提供了方向和目標(biāo)。
人工智能的體會心得篇三
在大多數(shù)數(shù)學(xué)科中存在著幾個不同的研究領(lǐng)域,每個領(lǐng)域都有著特有的感興趣的研究課題、研究技術(shù)和術(shù)語。在人工智能中,這樣的領(lǐng)域包括自然語言處理、自動定理證明、自動程序設(shè)計、智能檢索、智能調(diào)度、機器學(xué)習(xí)、專家系統(tǒng)、機器人學(xué)、智能控制、模式識別、視覺系統(tǒng)、神經(jīng)網(wǎng)絡(luò)、agent、計算智能、問題求解、人工生命、人工智能方法、程序設(shè)計語言等。
在過去50多年里,已經(jīng)建立了一些具有人工智能的計算機系統(tǒng);例如,能夠求解微分方程的,下棋的,設(shè)計分析集成電路的,合成人類自然語言的,檢索情報的,診斷疾病以及控制控制太空飛行器、地面移動機器人和水下機器人的具有不同程度人工智能的計算機系統(tǒng)。人工智能是一種外向型的學(xué)科,它不但要求研究它的人懂得人工智能的知識,而且要求有比較扎實的數(shù)學(xué)基礎(chǔ),哲學(xué)和生物學(xué)基礎(chǔ),只有這樣才可能讓一臺什么也不知道的機器模擬人的思維。因為人工智能的研究領(lǐng)域十分廣闊,它總的來說是面向應(yīng)用的,也就說什么地方有人在工作,它就可以用在什么地方,因為人工智能的最根本目的還是要模擬人類的思維。參照人在各種活動中的功能,我們可以得到人工智能的領(lǐng)域也不過就是代替人的活動而已。哪個領(lǐng)域有人進行的智力活動,哪個領(lǐng)域就是人工智能研究的領(lǐng)域。人工智能就是為了應(yīng)用機器的長處來幫助人類進行智力活動。人工智能研究的目的就是要模擬人類神經(jīng)系統(tǒng)的功能。
近年來,人工智能的研究和應(yīng)用出現(xiàn)了許多新的領(lǐng)域,它們是傳統(tǒng)人工智能的延伸和擴展。在新世紀(jì)開始的時候,這些新研究已引起人們的更密切關(guān)注。這些新領(lǐng)域有分布式人工智能與艾真體(agent)、計算智能與進化計算、數(shù)據(jù)挖掘與知識發(fā)現(xiàn),以及人工生命等。下面逐一加以概略介紹。
分布式人工智能(distributedai,dai)是分布式計算與人工智能結(jié)合的結(jié)果。dai系統(tǒng)以魯棒性作為控制系統(tǒng)質(zhì)量的標(biāo)準(zhǔn),并具有互操作性,即不同的異構(gòu)系統(tǒng)在快速變化的環(huán)境中具有交換信息和協(xié)同工作的能力。
分布式人工智能的研究目標(biāo)是要創(chuàng)建一種能夠描述自然系統(tǒng)和社會系統(tǒng)的精確概念模型。dai中的智能并非獨立存在的概念,只能在團體協(xié)作中實現(xiàn),因而其主要研究問題是各艾真體間的合作與對話,包括分布式問題求解和多艾真體系統(tǒng)(multiagentsystem,mas)兩領(lǐng)域。其中,分布式問題求解把一個具體的求解問題劃分為多個相互合作和知識共享的模塊或結(jié)點。多艾真體系統(tǒng)則研究各艾真體間智能行為的協(xié)調(diào),包括規(guī)劃、知識、技術(shù)和動作的協(xié)調(diào)。這兩個研究領(lǐng)域都要研究知識、資源和控制的劃分問題,但分布式問題求解往往含有一個全局的概念模型、問題和成功標(biāo)準(zhǔn),而mas則含有多個局部的概念模型、問題和成功標(biāo)準(zhǔn)。
mas更能體現(xiàn)人類的社會智能,具有更大的靈活性和適應(yīng)性,更適合開放和動。
態(tài)的世界環(huán)境,因而倍受重視,已成為人工智能以至計算機科學(xué)和控制科學(xué)與工程的研究熱點。當(dāng)前,艾真體和mas的研究包括理論、體系結(jié)構(gòu)、語言、合作與協(xié)調(diào)、通訊和交互技術(shù)、mas學(xué)習(xí)和應(yīng)用等。mas已在自動駕駛、機器人導(dǎo)航、機場管理、電力管理和信息檢索等方面獲得應(yīng)用。
2、計算智能與進化計算。
計算智能(computingintelligence)涉及神經(jīng)計算、模糊計算、進化計算等研究領(lǐng)域。其中,神經(jīng)計算和模糊計算已有較長的研究歷史,而進化計算則是較新的研究領(lǐng)域。在此僅對進化計算加以說明。
進化計算(evolutionarycomputation)是指一類以達爾文進化論為依據(jù)來設(shè)計、控制和優(yōu)化人工系統(tǒng)的技術(shù)和方法的總稱,它包括遺傳算法(geneticalgorithms)、進化策略(evolutionarystrategies)和進化規(guī)劃(evolutionaryprogramming)。它們遵循相同的指導(dǎo)思想,但彼此存在一定差別。同時,進化計算的研究關(guān)注學(xué)科的交叉和廣泛的應(yīng)用背景,因而引入了許多新的方法和特征,彼此間難于分類,這些都統(tǒng)稱為進化計算方法。目前,進化計算被廣泛運用于許多復(fù)雜系統(tǒng)的自適應(yīng)控制和復(fù)雜優(yōu)化問題等研究領(lǐng)域,如并行計算、機器學(xué)習(xí)、電路設(shè)計、神經(jīng)網(wǎng)絡(luò)、基于艾真體的仿真、元胞自動機等。
達爾文進化論是一種魯棒的搜索和優(yōu)化機制,對計算機科學(xué),特別是對人工智能的發(fā)展產(chǎn)生了很大的影響。大多數(shù)生物體通過自然選擇和有性生殖進行進化。自然選擇決定了群體中哪些個體能夠生存和繁殖,有性生殖保證了后代基因中的混合和重組。自然選擇的原則是適者生存,即物競天擇,優(yōu)勝劣汰。
直到幾年前,遺傳算法、進化規(guī)劃、進化策略三個領(lǐng)域的研究才開始交流,并發(fā)現(xiàn)它們的共同理論基礎(chǔ)是生物進化論。因此,把這三種方法統(tǒng)稱為進化計算,而把相應(yīng)的算法稱為進化算法。
3、數(shù)據(jù)挖掘與知識發(fā)現(xiàn)。
知識獲取是知識信息處理的關(guān)鍵問題之一。20世紀(jì)80年代人們在知識發(fā)現(xiàn)方面取得了一定的進展。利用樣本,通過歸納學(xué)習(xí),或者與神經(jīng)計算結(jié)合起來進行知識獲取已有一些試驗系統(tǒng)。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)是90年代初期新崛起的一個活躍的研究領(lǐng)域。在數(shù)據(jù)庫基礎(chǔ)上實現(xiàn)的知識發(fā)現(xiàn)系統(tǒng),通過綜合運用統(tǒng)計學(xué)、粗糙集、模糊數(shù)學(xué)、機器學(xué)習(xí)和專家系統(tǒng)等多種學(xué)習(xí)手段和方法,從大量的數(shù)據(jù)中提煉出抽象的知識,從而揭示出蘊涵在這些數(shù)據(jù)背后的客觀世界的內(nèi)在聯(lián)系和本質(zhì)規(guī)律,實現(xiàn)知識的自動獲取。這是一個富有挑戰(zhàn)性、并具有廣闊應(yīng)用前景的研究課題。
從數(shù)據(jù)庫獲取知識,即從數(shù)據(jù)中挖掘并發(fā)現(xiàn)知識,首先要解決被發(fā)現(xiàn)知識的表達問題。最好的表達方式是自然語言,因為它是人類的思維和交流語言。知識表示的最根本問題就是如何形成用自然語言表達的概念。
機器知識發(fā)現(xiàn)始于1974年,并在此后十年中獲得一些進展。這些進展往往與專家系統(tǒng)的知識獲取研究有關(guān)。到20世紀(jì)80年代末,數(shù)據(jù)挖掘取得突破。越來越多的研究者加入到知識發(fā)現(xiàn)和數(shù)據(jù)挖掘的研究行列?,F(xiàn)在,知識發(fā)現(xiàn)和數(shù)據(jù)挖掘已成為人工智能研究的又一熱點。
比較成功的知識發(fā)現(xiàn)系統(tǒng)有用于超級市場商品數(shù)據(jù)分析、解釋和報告的。
coverstory系統(tǒng),用于概念性數(shù)據(jù)分析和查尋感興趣關(guān)系的集成化系統(tǒng)explora,交互式大型數(shù)據(jù)庫分析工具kdw,用于自動分析大規(guī)模天空觀測數(shù)據(jù)的skicat系統(tǒng),以及通用的數(shù)據(jù)庫知識發(fā)現(xiàn)系統(tǒng)kdd等。
4、人工生命。
人工生命(artificiallife,alife)的概念是由美國圣菲研究所非線性研究組的蘭頓(langton)于1987年提出的,旨在用計算機和精密機械等人工媒介生成或構(gòu)造出能夠表現(xiàn)自然生命系統(tǒng)行為特征的仿真系統(tǒng)或模型系統(tǒng)。自然生命系統(tǒng)行為具有自組織、自復(fù)制、自修復(fù)等特征以及形成這些特征的混沌動力學(xué)、進化和環(huán)境適應(yīng)。
人工生命所研究的人造系統(tǒng)能夠演示具有自然生命系統(tǒng)特征的行為,在“生命之所能”(lifeasitcouldbe)的廣闊范圍內(nèi)深入研究“生命之所知”(lifeasweknowit)的實質(zhì)。只有從“生命之所能”的廣泛內(nèi)容來考察生命,才能真正理解生物的本質(zhì)。人工生命與生命的形式化基礎(chǔ)有關(guān)。生物學(xué)從問題的頂層開始,把器官、組織、細胞、細胞膜,直到分子,以探索生命的奧秘和機理。人工生命則從問題的底層開始,把器官作為簡單機構(gòu)的宏觀群體來考察,自底向上進行綜合,把簡單的由規(guī)則支配的對象構(gòu)成更大的集合,并在交互作用中研究非線性系統(tǒng)的類似生命的全局動力學(xué)特性。
人工生命的理論和方法有別于傳統(tǒng)人工智能和神經(jīng)網(wǎng)絡(luò)的理論和方法。人工生命把生命現(xiàn)象所體現(xiàn)的自適應(yīng)機理通過計算機進行仿真,對相關(guān)非線性對象進行更真實的動態(tài)描述和動態(tài)特征研究。
人工生命學(xué)科的研究內(nèi)容包括生命現(xiàn)象的仿生系統(tǒng)、人工建模與仿真、進化動力學(xué)、人工生命的計算理論、進化與學(xué)習(xí)綜合系統(tǒng)以及人工生命的應(yīng)用等。比較典型的人工生命研究有計算機病毒、計算機進程、進化機器人、自催化網(wǎng)絡(luò)、細胞自動機、人工核苷酸和人工腦等。
(1)了解人工智能的概念和人工智能的發(fā)展,了解國際人工智能的主要流派和路線,了解國內(nèi)人工智能研究的基本情況,熟悉人工智能的研究領(lǐng)域。
(2)較詳細地論述知識表示的各種主要方法。重點掌握了狀態(tài)空間法、問題歸約法和謂詞邏輯法,熟悉語義網(wǎng)絡(luò)法,了解知識表示的其他方法,如框架法、劇本法、過程法等。
(3)掌握了盲目搜索和啟發(fā)式搜索的基本原理和算法,特別是寬度優(yōu)先搜索、深度優(yōu)先搜索、等代價搜索、啟發(fā)式搜索、有序搜索、a*算法等。了解博弈樹搜索、遺傳算法和模擬退火算法的基本方法。
(4)掌握了消解原理、規(guī)則演繹系統(tǒng)和產(chǎn)生式系統(tǒng)的技術(shù)、了解不確定性推理、非單調(diào)推理的概念。
(5)概括性地了解了人工智能的主要應(yīng)用領(lǐng)域,如專家系統(tǒng)、機器學(xué)習(xí)、規(guī)劃系統(tǒng)、自然語言理解和智能控制等。
(6)基本了解人工智能程序設(shè)計的語言和工具。
對現(xiàn)代社會的影響有多大?工業(yè)領(lǐng)域,尤其是制造業(yè),已成功地使用了人工智能技術(shù),包括智能設(shè)計、虛擬制造、在線分析、智能調(diào)度、仿真和規(guī)劃等。金融業(yè),股票商利用智能系統(tǒng)輔助其分析,判斷和決策;應(yīng)用卡欺詐檢測系統(tǒng)業(yè)已得到普遍應(yīng)用。人工智能還滲透到人們的日常生活,cad,cam,cai,cap,cims等一系列智能產(chǎn)品給大家?guī)砹藰O大的方便,它還改變了傳統(tǒng)的通信方式,語音撥號,手寫短信的智能手機越來越人性化。
人工智能還影響了你們的文化和娛樂生活,引發(fā)人們更深層次的精神和哲學(xué)層面的思考,從施瓦辛格主演的《終結(jié)者》系列,到基努.里維斯主演的《黑客帝國》系列以及斯皮爾伯格導(dǎo)演的《人工智能》,都有意無意的提出了同樣的問題:我們應(yīng)該如何看待人工智能?如何看待具有智能的機器?會不會有一天機器的智能將超過人的智能?問題的答案也許千差萬別,我個人認為上述擔(dān)心不太可能成為現(xiàn)實,因為我們理解人工智能并不是讓它取代人類智能,而是讓它模擬人類智能,從而更好地為人類服務(wù)。
當(dāng)前人工智能技術(shù)發(fā)展迅速,新思想,新理論,新技術(shù)不斷涌現(xiàn),如模糊技術(shù),模糊--神經(jīng)網(wǎng)絡(luò),遺傳算法,進化程序設(shè)計,混沌理論,人工生命,計算智能等。以agent概念為基礎(chǔ)的分布式人工智能正在異軍突起,特別是對于軟件的開發(fā),“面向agent技術(shù)”將是繼“面向?qū)ο蠹夹g(shù)”后的又一突破。從萬維網(wǎng)到人工智能的研究正在如火如荼的開展。
(1)能夠結(jié)合現(xiàn)在最新研究成果著重講解重點知識,以及講述在一些研究成果中人工智能那些知識被應(yīng)用。
(2)多推薦一些過于人工智能方面的電影,如:《終結(jié)者》系列、《黑客帝國》系列、《人工智能》等,從而增加同學(xué)對這門課程學(xué)習(xí)的興趣。
(3)條件允許的話,可以安排一些實驗課程,讓同學(xué)們自己制作一些簡單的作品,增強同學(xué)對人工智能的興趣,加強同學(xué)之間的學(xué)習(xí)。
(4)課堂上多講解一些人工智能在各個領(lǐng)域方面的應(yīng)用,以及著重闡述一些新的和正在研究的人工智能方法與技術(shù),讓同學(xué)們可以了解近期發(fā)展起來的方法和技術(shù),在講解時最好多舉例,再結(jié)合原理進行講解,更助于同學(xué)們對人工智能的理解。
人工智能的體會心得篇四
人類正向信息化的時代邁進,信息化是當(dāng)前時代的主旋律。信息抽象結(jié)晶為知識,知識構(gòu)成智能的基礎(chǔ)。因此,信息化到知識化再到智能化,必將成為人類社會發(fā)展的趨勢。人工智能已經(jīng)并且廣泛而有深入的結(jié)合到科學(xué)技術(shù)的各門學(xué)科和社會的各個領(lǐng)域中,她的概念,方法和技術(shù)正在各行各業(yè)廣泛滲透。而在我們的身邊,智能化的例子也屢見不鮮。在軍事、工業(yè)和醫(yī)學(xué)等領(lǐng)域中人工智能的應(yīng)用已經(jīng)顯示出了它具有明顯的經(jīng)濟效益潛力,和提升人們生活水平的最大便利性和先進性。
智能是一個寬泛的概念。智能是人類具有的特征之一。然而,對于什么是人類智能(或者說智力),科學(xué)界至今還沒有給出令人滿意的定義。有人從生物學(xué)角度定義為“中樞神經(jīng)系統(tǒng)的功能”,有人從心理學(xué)角度定義為“進行抽象思維的能力”,甚至有人同義反復(fù)地把它定義為“獲得能力的能力”,或者不求甚解地說它“就是智力測驗所測量的那種東西”。這些都不能準(zhǔn)確的說明人工智能的確切內(nèi)涵。
雖然難于下定義,但人工智能的發(fā)展已經(jīng)是當(dāng)前信息化社會的迫切要求,同時研究人工智能也對探索人類自身智能的奧秘提供有益的幫助。所以每一次人工智能技術(shù)的進步都將帶動計算機科學(xué)的大跨步前進。如果將現(xiàn)有的計算機技術(shù)、人工智能技術(shù)及自然科學(xué)的某些相關(guān)領(lǐng)域結(jié)合,并有一定的理論實踐依據(jù),計算機將擁有一個新的發(fā)展方向。
個人覺得研究人工智能的目的,一方面是要創(chuàng)造出具有智能的機器,另一方面是要弄清人類智能的本質(zhì),因此,人工智能既屬于工程的范疇,又屬于科學(xué)的范疇。通過研究和開發(fā)人工智能,可以輔助,部分替代甚至拓寬人類的智能,使計算機更好的造福人類。
人工智能的體會心得篇五
人工智能改變了我們的生活方式,理解什么是人工智能,才能知道人工智能教育要培養(yǎng)學(xué)生什么知識,什么素養(yǎng),才能為社會發(fā)展提供源源不斷的動力源泉。
人工智能簡稱ai,它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué),在此次人工智能教育論壇中,黃錦輝教授對人工智能用更加利于理解的解釋是人工智能等于云計算、大數(shù)據(jù)、機器學(xué)習(xí)和5g技術(shù)綜合的產(chǎn)物,做好人工智能教育能實現(xiàn)不斷提升人們生活的質(zhì)量,在論壇中,劉三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的.著力點集中在算力、數(shù)據(jù)處理、算法以及場景化的學(xué)習(xí),使學(xué)生對教材可以理解,教育情景可以感知,學(xué)習(xí)服務(wù)可以定制,使人工智能教育從智能增強,轉(zhuǎn)變?yōu)橹悄苎a償,最終達到智能替代。
在實際過程中,很多學(xué)校沒有開展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步開展起來呢?人工智能開展過程中,主要面臨的問題主要有:
第一教材的缺乏,
第二師資的缺乏,
第三課程實施的場地缺乏,
第四怎么教的問題。
分為三個階段:
第一階段大班stem基礎(chǔ)教學(xué),
第二輪實踐教學(xué)建立社團校隊,
第三開展項目式專訓(xùn),培育科技特長生,或者各年級年級培養(yǎng)學(xué)生人工智能教育的不同目標(biāo),小學(xué)低年級可以主要培養(yǎng)綜合素養(yǎng),小學(xué)高年級跨學(xué)科應(yīng)用,初中形成目標(biāo)方向,高中向目標(biāo)方向進行研究。
人工智能的體會心得篇六
人工智能改變了我們的生活方式,理解什么是人工智能,才能知道人工智能教育要培養(yǎng)學(xué)生什么知識,什么素養(yǎng),才能為社會發(fā)展提供源源不斷的動力源泉。
人工智能簡稱ai,它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué),在此次人工智能教育論壇中,黃錦輝教授對人工智能用更加利于理解的解釋是人工智能等于云計算、大數(shù)據(jù)、機器學(xué)習(xí)和5g技術(shù)綜合的產(chǎn)物,做好人工智能教育能實現(xiàn)不斷提升人們生活的質(zhì)量,在論壇中,劉三女牙教授指出人工智能教育的智能化新模式正在形成,其教育的著力點集中在算力、數(shù)據(jù)處理、算法以及場景化的學(xué)習(xí),使學(xué)生對教材可以理解,教育情景可以感知,學(xué)習(xí)服務(wù)可以定制,使人工智能教育從智能增強,轉(zhuǎn)變?yōu)橹悄苎a償,最終達到智能替代。
在實際過程中,很多學(xué)校沒有開展人工智能教育,人工智能教育不是一蹴而就的事情,那要怎么逐步開展起來呢?人工智能開展過程中,主要面臨的問題主要有:
第一教材的缺乏,
第二師資的缺乏,
第三課程實施的場地缺乏,
第四怎么教的問題。
分為三個階段:
第一階段大班stem基礎(chǔ)教學(xué),
第二輪實踐教學(xué)建立社團校隊,
第三開展項目式專訓(xùn),培育科技特長生,或者各年級年級培養(yǎng)學(xué)生人工智能教育的不同目標(biāo),小學(xué)低年級可以主要培養(yǎng)綜合素養(yǎng),小學(xué)高年級跨學(xué)科應(yīng)用,初中形成目標(biāo)方向,高中向目標(biāo)方向進行研究。
這次的粵港澳臺人工智能教育論壇學(xué)習(xí),拓寬了我對人工智能教育的認識,對我的教學(xué)如何開展人工智能教育具有指導(dǎo)和借鑒意義。
人工智能的體會心得篇七
通過學(xué)習(xí)李開復(fù)老師的《人工智能》,我獲益良多,很多問題也有了答案。我認為這是一本很好的面向大眾的科普讀物,介紹了人工智能的基本理念,發(fā)展歷程和對未來的展望。
下面以問答的形式,記錄學(xué)習(xí)心得。
其實,人工智能已經(jīng)到處都是,什么都做:可以陪人聊天,可以寫標(biāo)準(zhǔn)新聞,能畫畫,能翻譯,能開車,能認出人的樣子,能在互聯(lián)網(wǎng)上搜答案,能在倉庫搬貨,能送快遞到家。
人工智能是什么,眾說紛紜,一般有以下五種定義(可能有交叉):1)在某方面特別聰明的計算機程序,比如alphago,下圍棋下得特別好,世界冠軍也下不過它。
2)試圖像人一樣思考的計算機程序。但這事兒太難,人的意識,連人自己都搞不清楚,更別說教給自己編出來的程序了。
3)怎么想的不知道,行為方式倒是很像人,比如可以和人聊天的eliza。
4)會自己學(xué)習(xí)的,剛開始笨笨的,慢慢地就越來越聰明。alphago也是因為頭懸梁錐刺股,苦學(xué)了海量棋譜才變得這么厲害的。
5)根據(jù)對環(huán)境的感知,做出合理的行動,并獲得最大收益的計算機程序。
這五種定義各有根據(jù)和局限,也可以認為人工智能首先是感知,包括視覺、語音、語言;然后是決策,根據(jù)識別的信息,做出預(yù)測和判斷;最后是反饋,就像機器人或自動駕駛。
我的理解:人工智能是高性能的計算機程序,或者使用了人工智能的產(chǎn)品、服務(wù)和應(yīng)用。
人工智能有很多分支,其中之一是機器學(xué)習(xí),機器學(xué)習(xí)里面有一個分支是深度學(xué)習(xí),深度學(xué)習(xí)是當(dāng)今乃至未來很長一段時間內(nèi)引領(lǐng)人工智能發(fā)展的核心技術(shù)。
深度學(xué)習(xí)是一種神經(jīng)網(wǎng)絡(luò),把計算機要學(xué)習(xí)的東西看成數(shù)據(jù),把數(shù)據(jù)丟進多個層級的數(shù)據(jù)處理網(wǎng)絡(luò),然后檢查經(jīng)過網(wǎng)絡(luò)處理的結(jié)果數(shù)據(jù)是否符合要求。如果符合,就保留網(wǎng)絡(luò)作為目標(biāo)模型,如果不符合,就反復(fù)修改參數(shù),直到符合為止。
書中舉了一個例子,非常形象生動:把數(shù)據(jù)看成水流,深度學(xué)習(xí)網(wǎng)絡(luò)看成多層水管網(wǎng)絡(luò),通過調(diào)節(jié)管道和閥門,使輸出滿足要求。
歷史上有過3次ai熱潮,第一次因為圖靈測試,第二次因為語言識別,都熱了一段時間又沉寂下去。
目前,深度學(xué)習(xí)攜手大數(shù)據(jù)引領(lǐng)的第三次熱潮,處于技術(shù)曲線的攀升和成熟期,前景極為廣闊。
人工智能不僅是技術(shù)革命,還與經(jīng)濟變革、教育變革、思想變革、經(jīng)濟變革、文化變革等同步,可能成為下一次工業(yè)革命的核心驅(qū)動力。主要的商業(yè)應(yīng)用場景:
智慧生活:機器翻譯、智能家居、智能超市。
智慧醫(yī)療:輔助診斷疾病、對疑難病癥的醫(yī)療科學(xué)研究。
藝術(shù)創(chuàng)作:機器音樂、機器繪畫、機器文學(xué)創(chuàng)作。
會不會失控,威脅人類的安全?可能會引起失業(yè)。根據(jù)開復(fù)老師提出的“五秒鐘準(zhǔn)則”,一項人從事的工作,如果可以在5秒鐘內(nèi)完成思考并做出決策,那么這項工作很可能會被人工智能取代。如保安、股票交易員、司機、新聞報道、翻譯。但人工智能也會帶來新的工作。
1)弱人工智能:在某方面很聰明,但只在這方面聰明,別的事啥也不會。比如alphago,下圍棋世界第一,別的方面就是個弱智,連棋子都得別人幫它拿。
2)強人工智能:人能做什么,它就能做什么。跟美劇《西部世界》里的機器人差不多,但它有沒有意識,不好說。
3)超人工智能:比最聰明的人類還要聰明100000000倍。都不止,它的nb,超乎你想象。我們不知道它是誰,不知道它在哪里,不知道它什么時候出現(xiàn),也不知道它會干什么。
可能在某個時刻(奇點)之后,超人工智能就會天神降臨,整個世界籠罩在它無邊的法力之下。
也可能,因為物理學(xué)和生物學(xué)的限制,超人工智能永遠不會來。
無論如何,人工智能,或者說,對人工智能的研究和使用,需要受到監(jiān)管和限制,也需要應(yīng)對轉(zhuǎn)型過程中對失業(yè)的沖擊。
1.抽象能力知其然,也知其所以然,了解事物運行的本質(zhì)規(guī)律。
2.常識。
3.自我意識。
4.審美。
5.情感。
不過,已經(jīng)有軟件可以吟詩作詞,而且相當(dāng)高明。比如這首根據(jù)遺傳算法生成的《清平樂-黃菊》:
“相逢縹緲,窗外又拂曉.長憶清弦弄淺笑,只恨人間花少.黃菊不待清尊,相思飄落無痕.風(fēng)雨重陽又過,登高多少黃昏.”平仄相符,語句通順,很有意境。
人工智能的體會心得篇八
人工智能主要研究用人工方法模擬和擴展人的智能,最終實現(xiàn)機器智能。人工智能研究與人的思維研究密切相關(guān)。邏輯學(xué)始終是人工智能研究中的基礎(chǔ)科學(xué)問題,它為人工智能研究提供了根本觀點與方法。
12世紀(jì)末13世紀(jì)初,西班牙羅門·盧樂提出制造可解決各種問題的通用邏輯機。17世紀(jì),英國培根在《新工具》中提出了歸納法。隨后,德國萊布尼茲做出了四則運算的手搖計算器,并提出了“通用符號”和“推理計算”的思想。19世紀(jì),英國布爾創(chuàng)立了布爾代數(shù),奠定了現(xiàn)代形式邏輯研究的基礎(chǔ)。德國弗雷格完善了命題邏輯,創(chuàng)建了一階謂詞演算系統(tǒng)。20世紀(jì),哥德爾對一階謂詞完全性定理與n形式系統(tǒng)的不完全性定理進行了證明。在此基礎(chǔ)上,克林對一般遞歸函數(shù)理論作了深入的研究,建立了演算理論。英國圖靈建立了描述算法的機械性思維過程,提出了理想計算機模型(即圖靈機),創(chuàng)立了自動機理論。這些都為1945年匈牙利馮·諾依曼提出存儲程序的思想和建立通用電子數(shù)字計算機的馮·諾依曼型體系結(jié)構(gòu),以及1946年美國的莫克利和埃克特成功研制世界上第一臺通用電子數(shù)學(xué)計算機eniac做出了開拓性的貢獻。
以上經(jīng)典數(shù)理邏輯的理論成果,為1956年人工智能學(xué)科的誕生奠定了堅實的邏輯基礎(chǔ)。
現(xiàn)代邏輯發(fā)展動力主要來自于數(shù)學(xué)中的公理化運動。20世紀(jì)邏輯研究嚴重數(shù)學(xué)化,發(fā)展出來的邏輯被恰當(dāng)?shù)胤Q為“數(shù)理邏輯”,它增強了邏輯研究的深度,使邏輯學(xué)的發(fā)展繼古希臘邏輯、歐洲中世紀(jì)邏輯之后進入第三個高峰期,并且對整個現(xiàn)代科學(xué)特別是數(shù)學(xué)、哲學(xué)、語言學(xué)和計算機科學(xué)產(chǎn)生了非常重要的影響。
2.1邏輯學(xué)的大體分類。
邏輯學(xué)是一門研究思維形式及思維規(guī)律的科學(xué)。從17世紀(jì)德國數(shù)學(xué)家、哲學(xué)家萊布尼茲(niz)提出數(shù)理邏輯以來,隨著人工智能的一步步發(fā)展的需求,各種各樣的邏輯也隨之產(chǎn)生。邏輯學(xué)大體上可分為經(jīng)典邏輯、非經(jīng)典邏輯和現(xiàn)代邏輯。經(jīng)典邏輯與模態(tài)邏輯都是二值邏輯。多值邏輯,是具有多個命題真值的邏輯,是向模糊邏輯的逼近。模糊邏輯是處理具有模糊性命題的邏輯。概率邏輯是研究基于邏輯的概率推理。
2.2泛邏輯的基本原理。
當(dāng)今人工智能深入發(fā)展遇到的一個重大難題就是專家經(jīng)驗知識和常識的推理。現(xiàn)代邏輯迫切需要有一個統(tǒng)一可靠的,關(guān)于不精確推理的邏輯學(xué)作為它們進一步研究信息不完全情況下推理的基礎(chǔ)理論,進而形成一種能包容一切邏輯形態(tài)和推理模式的,靈活的,開放的,自適應(yīng)的邏輯學(xué),這便是柔性邏輯學(xué)。而泛邏輯學(xué)就是研究剛性邏輯學(xué)(也即數(shù)理邏輯)和柔性邏輯學(xué)共同規(guī)律的邏輯學(xué)。
泛邏輯是從高層研究一切邏輯的一般規(guī)律,建立能包容一切邏輯形態(tài)和推理模式,并能根據(jù)需要自由伸縮變化的柔性邏輯學(xué),剛性邏輯學(xué)將作為一個最小的內(nèi)核存在其中,這就是提出泛邏輯的根本原因,也是泛邏輯的最終歷史使命。
邏輯方法是人工智能研究中的主要形式化工具,邏輯學(xué)的研究成果不但為人工智能學(xué)科的誕生奠定了理論基礎(chǔ),而且它們還作為重要的成分被應(yīng)用于人工智能系統(tǒng)中。
3.1經(jīng)典邏輯的應(yīng)用。
人工智能誕生后的20年間是邏輯推理占統(tǒng)治地位的時期。1963年,紐厄爾、西蒙等人編制的“邏輯理論機”數(shù)學(xué)定理證明程序(lt)。在此基礎(chǔ)之上,紐厄爾和西蒙編制了通用問題求解程序(gps),開拓了人工智能“問題求解”的一大領(lǐng)域。經(jīng)典數(shù)理邏輯只是數(shù)學(xué)化的形式邏輯,只能滿足人工智能的部分需要。
3.2非經(jīng)典邏輯的應(yīng)用。
(1)不確定性的推理研究。
人工智能發(fā)展了用數(shù)值的方法表示和處理不確定的信息,即給系統(tǒng)中每個語句或公式賦一個數(shù)值,用來表示語句的不確定性或確定性。比較具有代表性的有:1976年杜達提出的主觀貝葉斯模型,1978年查德提出的可能性模型,1984年邦迪提出的發(fā)生率計算模型,以及假設(shè)推理、定性推理和證據(jù)空間理論等經(jīng)驗性模型。
歸納邏輯是關(guān)于或然性推理的邏輯。在人工智能中,可把歸納看成是從個別到一般的推理。借助這種歸納方法和運用類比的方法,計算機就可以通過新、老問題的相似性,從相應(yīng)的知識庫中調(diào)用有關(guān)知識來處理新問題。
(2)不完全信息的推理研究。
常識推理是一種非單調(diào)邏輯,即人們基于不完全的信息推出某些結(jié)論,當(dāng)人們得到更完全的信息后,可以改變甚至收回原來的結(jié)論。非單調(diào)邏輯可處理信息不充分情況下的推理。20世紀(jì)80年代,賴特的缺省邏輯、麥卡錫的限定邏輯、麥克德莫特和多伊爾建立的nml非單調(diào)邏輯推理系統(tǒng)、摩爾的自認知邏輯都是具有開創(chuàng)性的非單調(diào)邏輯系統(tǒng)。常識推理也是一種可能出錯的不精確的推理,即容錯推理。
此外,多值邏輯和模糊邏輯也已經(jīng)被引入到人工智能中來處理模糊性和不完全性信息的推理。多值邏輯的三個典型系統(tǒng)是克林、盧卡西維茲和波克萬的三值邏輯系統(tǒng)。模糊邏輯的研究始于20世紀(jì)20年代盧卡西維茲的研究。1972年,扎德提出了模糊推理的關(guān)系合成原則,現(xiàn)有的絕大多數(shù)模糊推理方法都是關(guān)系合成規(guī)則的變形或擴充。
現(xiàn)代邏輯創(chuàng)始于19世紀(jì)末葉和20世紀(jì)早期,其發(fā)展動力主要來自于數(shù)學(xué)中的公理化運動。21世紀(jì)邏輯發(fā)展的主要動力來自哪里?筆者認為,計算機科學(xué)和人工智能將至少是21世紀(jì)早期邏輯學(xué)發(fā)展的主要動力源泉,并將由此決定21世紀(jì)邏輯學(xué)的另一幅面貌。由于人工智能要模擬人的智能,它的難點不在于人腦所進行的各種必然性推理,而是最能體現(xiàn)人的智能特征的能動性、創(chuàng)造性思維,這種思維活動中包括學(xué)習(xí)、抉擇、嘗試、修正、推理諸因素。例如,選擇性地搜集相關(guān)的經(jīng)驗證據(jù),在不充分信息的基礎(chǔ)上做出嘗試性的判斷或抉擇,不斷根據(jù)環(huán)境反饋調(diào)整、修正自己的行為,由此達到實踐的成功。于是,邏輯學(xué)將不得不比較全面地研究人的思維活動,并著重研究人的思維中最能體現(xiàn)其能動性特征的各種不確定性推理,由此發(fā)展出的邏輯理論也將具有更強的可應(yīng)用性。
人工智能的產(chǎn)生與發(fā)展和邏輯學(xué)的發(fā)展密不可分。
一方面我們試圖找到一個包容一切邏輯的泛邏輯,使得形成一個完美統(tǒng)一的邏輯基礎(chǔ);另一方面,我們還要不斷地爭論、更新、補充新的邏輯。如果二者能夠有機地結(jié)合,將推動人工智能進入一個新的階段。概率邏輯大都是基于二值邏輯的,目前許多專家和學(xué)者又在基于其他邏輯的基礎(chǔ)上研究概率推理,使得邏輯學(xué)盡可能滿足人工智能發(fā)展的各方面的需要。就目前來說,一個新的泛邏輯理論的發(fā)展和完善需要一個比較長的時期,那何不將“百花齊放”與“一統(tǒng)天下”并行進行,各自發(fā)揮其優(yōu)點,為人工智能的發(fā)展做出貢獻。目前,許多制約人工智能發(fā)展的因素仍有待于解決,技術(shù)上的突破,還有賴于邏輯學(xué)研究上的突破。在對人工智能的研究中,我們只有重視邏輯學(xué),努力學(xué)習(xí)與運用并不斷深入挖掘其基本內(nèi)容,拓寬其研究領(lǐng)域,才能更好地促進人工智能學(xué)科的發(fā)展。
您可能關(guān)注的文檔
- 勸子孝父 心得體會
- 最新防汛工作調(diào)度會議講話(通用8篇)
- 最新教師幫扶工作總結(jié)及幫扶成效(匯總8篇)
- 2023年新入職體育教師個人發(fā)展計劃(模板9篇)
- 師帶徒計劃總結(jié)(模板9篇)
- 最新行政前臺工作目標(biāo)和計劃(模板8篇)
- 飲食護理包括哪些 護理工作計劃
- 最新論文選題與撰寫的心得體會(通用8篇)
- 2023年財務(wù)共享工作匯報(實用17篇)
- 最新物理教學(xué)教研活動記錄(優(yōu)質(zhì)16篇)
- 學(xué)生會秘書處的職責(zé)和工作總結(jié)(專業(yè)17篇)
- 教育工作者分享故事的感悟(熱門18篇)
- 學(xué)生在大學(xué)學(xué)生會秘書處的工作總結(jié)大全(15篇)
- 行政助理的自我介紹(專業(yè)19篇)
- 職業(yè)顧問的職業(yè)發(fā)展心得(精選19篇)
- 法治興則民族興的實用心得體會(通用15篇)
- 教師在社區(qū)團委的工作總結(jié)(模板19篇)
- 教育工作者的社區(qū)團委工作總結(jié)(優(yōu)質(zhì)22篇)
- 體育教練軍訓(xùn)心得體會(優(yōu)秀19篇)
- 學(xué)生軍訓(xùn)心得體會范文(21篇)
- 青年軍訓(xùn)第二天心得(實用18篇)
- 警察慰問春節(jié)虎年家屬的慰問信(優(yōu)秀18篇)
- 家屬慰問春節(jié)虎年的慰問信(實用20篇)
- 公務(wù)員慰問春節(jié)虎年家屬的慰問信(優(yōu)質(zhì)21篇)
- 植物生物學(xué)課程心得體會(專業(yè)20篇)
- 政府官員參與新冠肺炎疫情防控工作方案的重要性(匯總23篇)
- 大學(xué)生創(chuàng)業(yè)計劃競賽范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 編輯教學(xué)秘書的工作總結(jié)(匯總17篇)
- 學(xué)校行政人員行政工作職責(zé)大全(18篇)
相關(guān)文檔
-
人 工 智 能 心得體會800字(大全17篇)18下載數(shù) 748閱讀數(shù) -
人 工 智 能 論文的技術(shù)創(chuàng)新(模板18篇)21下載數(shù) 486閱讀數(shù) -
人 工 智 能 心得體會分享(優(yōu)秀14篇)32下載數(shù) 536閱讀數(shù) -
2023年
人 工 智 能 心得體會(匯總13篇)10下載數(shù) 702閱讀數(shù) -
2023年
人 工 智 能 機器人 論文報告(匯總20篇)14下載數(shù) 731閱讀數(shù)