
- 時(shí)間:2023-11-15 20:46:11
- 小編:飛雪
- 文件格式 DOC


每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文怎么寫才能發(fā)揮它最大的作用呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
勾股定理的說(shuō)課稿篇一
各位專家領(lǐng)導(dǎo),上午好:
今天我說(shuō)課的課題是《勾股定理的逆定理》
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。
知識(shí)技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
過(guò)程與方法:
1、通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過(guò)程
2、通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用
3、通過(guò)勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題。
情感態(tài)度:
盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):勾股定理逆定理的應(yīng)用
難點(diǎn):勾股定理逆定理的證明
關(guān)鍵:輔助線的添法探索
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。
一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
本著由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問(wèn)題的方法是培養(yǎng)我們發(fā)現(xiàn)問(wèn)題認(rèn)識(shí)問(wèn)題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。b組題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。
總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。
勾股定理的說(shuō)課稿篇二
第一段:引言(100字)
勾股定理,作為幾何學(xué)中的重要定理,自古以來(lái)備受學(xué)子們的關(guān)注和研究。在學(xué)習(xí)勾股定理的過(guò)程中,我深刻地體驗(yàn)到了數(shù)學(xué)的魅力和智慧的力量。通過(guò)不斷地探索和實(shí)踐,我逐漸領(lǐng)悟到了勾股定理的本質(zhì)和應(yīng)用,同時(shí)也培養(yǎng)了一種思維方式和解決問(wèn)題的能力。在這篇文章中,我將分享我的學(xué)習(xí)心得和體會(huì)。
第二段:發(fā)現(xiàn)勾股定理的奇妙之處(200字)
在學(xué)習(xí)勾股定理的過(guò)程中,最吸引我的便是它的奇妙之處。通過(guò)畫圖、構(gòu)建模型和推導(dǎo),我發(fā)現(xiàn)了直角三角形的三邊長(zhǎng)度存在一個(gè)特殊關(guān)系:勾股定理。這個(gè)定理的表述很簡(jiǎn)潔明了,卻蘊(yùn)含著巨大的數(shù)學(xué)思想。我意識(shí)到,數(shù)學(xué)是一門富有創(chuàng)造性和想象力的學(xué)科,它的推理和發(fā)現(xiàn)過(guò)程充滿了樂(lè)趣和意義。勾股定理的發(fā)現(xiàn)啟發(fā)了我對(duì)數(shù)學(xué)的熱愛(ài)和深入學(xué)習(xí)的欲望。
第三段:勾股定理的應(yīng)用(300字)
勾股定理不僅僅是一條理論定理,它還有著廣泛的應(yīng)用。在實(shí)際生活和工程問(wèn)題中,勾股定理被廣泛地運(yùn)用,如建筑、測(cè)量、導(dǎo)航等領(lǐng)域。我通過(guò)實(shí)踐,發(fā)現(xiàn)勾股定理可以幫助我們解決很多有趣和實(shí)際的問(wèn)題。例如,在測(cè)量一棵高樹(shù)的高度時(shí),我們可以借助于勾股定理和三角函數(shù),通過(guò)測(cè)量與樹(shù)的距離和角度,計(jì)算出樹(shù)的高度。這樣的應(yīng)用不僅讓我理解到數(shù)學(xué)的實(shí)際應(yīng)用性,也提高了我解決實(shí)際問(wèn)題的能力和思維方式。
第四段:勾股定理培養(yǎng)的思維能力(300字)
學(xué)習(xí)勾股定理不僅僅是為了熟記公式,更重要的是培養(yǎng)我們的數(shù)學(xué)思維能力。在推導(dǎo)和證明勾股定理的過(guò)程中,我們需要運(yùn)用到很多的基本數(shù)學(xué)概念和推理方法。這不僅是一種數(shù)學(xué)的思維方式,更是一種邏輯思考的能力。通過(guò)學(xué)習(xí)和運(yùn)用勾股定理,我逐漸養(yǎng)成了思考問(wèn)題的習(xí)慣和方法:觀察、分析、歸納、推理。這種思維方式不僅在數(shù)學(xué)問(wèn)題中有用,也在其他學(xué)科和日常生活中有著廣泛的應(yīng)用。
第五段:總結(jié)與反思(200字)
學(xué)習(xí)勾股定理是一次令人振奮的旅程。通過(guò)這次學(xué)習(xí),我不僅掌握了一條重要的數(shù)學(xué)定理,也培養(yǎng)了數(shù)學(xué)思維和解決問(wèn)題的能力。勾股定理的奧妙之處和應(yīng)用的廣泛性讓我對(duì)數(shù)學(xué)產(chǎn)生了更深的興趣和熱愛(ài)。我相信,在今后的學(xué)習(xí)和生活中,這種思維方式和解決問(wèn)題的能力將成為我寶貴的財(cái)富。通過(guò)學(xué)習(xí)勾股定理,我不僅僅是在追求成績(jī),更重要的是在追求智慧和能力的提升。數(shù)學(xué)既是一門精密的科學(xué),也是一種與生活密切相關(guān)的實(shí)用工具和思維方式。
勾股定理的說(shuō)課稿篇三
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.
請(qǐng)讀者證明.
請(qǐng)同學(xué)們自己證明圖(2)、(3).
3.在數(shù)軸上表示無(wú)理數(shù)
二、典例精析
解:由勾股定理,得
132-52=144,所以另一條直角邊的長(zhǎng)為12.
所以這個(gè)直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到
頂點(diǎn)b,則它走過(guò)的最短路程為
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長(zhǎng)相等,因此只有一種展開(kāi)圖.
解:將正方體側(cè)面展開(kāi)
勾股定理的說(shuō)課稿篇四
第一段:引言(100字)
勾股定理是數(shù)學(xué)中最基礎(chǔ)、最重要的定理之一。對(duì)于很多學(xué)生來(lái)說(shuō),學(xué)習(xí)勾股定理是一個(gè)相對(duì)困難的過(guò)程。然而,通過(guò)我的學(xué)習(xí)和實(shí)踐,我認(rèn)識(shí)到勾股定理的重要性,并從中獲得了許多寶貴的體會(huì)和啟示。
第二段:親身感受 (200字)
從一開(kāi)始,我就感到學(xué)習(xí)勾股定理相當(dāng)?shù)睦щy和晦澀。尤其是在應(yīng)用解題時(shí),更是感到頭疼。面對(duì)這種情況,我采取了一種積極主動(dòng)的態(tài)度,勇敢地去面對(duì)挑戰(zhàn)。通過(guò)大量的練習(xí)和思考,我漸漸掌握了勾股定理的基本概念和使用方法。由此,我感受到了勾股定理對(duì)于解決實(shí)際問(wèn)題的巨大幫助,這讓我更加堅(jiān)定了自己學(xué)習(xí)的決心。
第三段:培養(yǎng)邏輯思維(300字)
除了對(duì)勾股定理的具體運(yùn)用,學(xué)習(xí)這一定理還培養(yǎng)了我良好的邏輯思維能力。在解決勾股定理問(wèn)題的過(guò)程中,我必須正確分析和處理各種信息,從而得出正確的結(jié)論。這種邏輯推理的訓(xùn)練也使我在日常生活和其他學(xué)科中受益良多。例如,在解決實(shí)際問(wèn)題時(shí),我能夠快速評(píng)估和分析各種選項(xiàng),并做出明智的決策。此外,在學(xué)習(xí)其他學(xué)科,如物理和計(jì)算機(jī)科學(xué)時(shí),邏輯思維能力也為我理解和應(yīng)用相關(guān)知識(shí)提供了極大的幫助。
第四段:?jiǎn)l(fā)個(gè)人發(fā)展(300字)
學(xué)習(xí)勾股定理還啟發(fā)了我對(duì)自己個(gè)人發(fā)展的思考。其中最重要的是學(xué)習(xí)和堅(jiān)持解決問(wèn)題的方法和思考方式。在解決勾股定理問(wèn)題時(shí),我經(jīng)常遇到困難和挑戰(zhàn),但我從不輕易放棄。相反,我通過(guò)不斷嘗試和調(diào)整方法,找到了最佳解決方案。這種堅(jiān)持和勇氣的精神,讓我在其他方面也能更加深入思考,更加努力地追求個(gè)人目標(biāo)。
第五段:總結(jié)(200字)
學(xué)習(xí)勾股定理對(duì)我來(lái)說(shuō)是一次寶貴的經(jīng)驗(yàn)。通過(guò)學(xué)習(xí)和應(yīng)用,我掌握了勾股定理的基本概念和解題方法,培養(yǎng)了邏輯思維能力,啟發(fā)了我對(duì)個(gè)人發(fā)展的思考。這個(gè)過(guò)程對(duì)我來(lái)說(shuō)不僅僅是學(xué)習(xí)數(shù)學(xué)知識(shí),更是提升自己的機(jī)會(huì)。我相信,在未來(lái)的學(xué)習(xí)和生活中,我會(huì)繼續(xù)發(fā)揚(yáng)勾股定理的精神,不斷追求進(jìn)步和創(chuàng)新。
勾股定理的說(shuō)課稿篇五
組織材料
編寫各部分的文字材料、圖形,設(shè)計(jì)需用的動(dòng)畫,拿出各個(gè)部分課件的制作稿本。如《引言》的稿本內(nèi)容是:1.在“旭日”畫面中打出字幕標(biāo)題:引言及引言的文字內(nèi)容,其中“旭日”畫面事先在photoshop中經(jīng)掃描儀輸入;2.與1同步播放背景音樂(lè)《春江花月夜》片斷;3.接1插入商高勾股定理的動(dòng)畫演示;4.提出思考題,引出課題與要求(其余部分因篇幅關(guān)系省略)。
制作分課件
在windows98下,點(diǎn)擊“開(kāi)始/程序/wps集成辦公系統(tǒng)”,進(jìn)入wps2000軟件的編輯窗口,在wps2000的菜單欄上選中“查看/工具條/操作向?qū)А泵?,點(diǎn)擊啟動(dòng)該功能,進(jìn)入wps2000的全功能制作狀態(tài)。下面以制作《引言》分課件為例介紹制作方法。
2.輸入文稿:接著在課件文件中輸入《引言》文字稿;
3.插入背景音樂(lè):將錄有《春江花月夜》的光盤插入光驅(qū),點(diǎn)擊“操作向?qū)А敝械摹岸嗝襟w對(duì)象”,選中存入的音樂(lè)文件類型“cd音樂(lè)”,在“曲目”選擇欄中選光盤上曲目《春江花月夜》;在“時(shí)間“選擇欄中選中播放時(shí)間0:00――0:50分鐘,然后點(diǎn)擊“試聽(tīng)”,滿意后點(diǎn)擊“確定“,就將背景音樂(lè)插入到了你的演示課件中,將此時(shí)做成的文件存為“前言1”。
5.制作《思考題,引出課題》幻燈片:在wps2000中重新建一個(gè)新文件,在該文件中分別輸入思考題內(nèi)容、本課課題與要求等文稿,將其編輯排版成符合課件要求的形式,將完成的文件命名為“思考1”。
6.設(shè)置演示形式:由于wps2000的演示功能只能對(duì)同一個(gè)文件中的對(duì)象或插入的有關(guān)視頻、音頻進(jìn)行演播,故將做好的“勾股動(dòng)畫1”、“思考1”以圖標(biāo)的形式插入到“引言1”中,將“引言1”設(shè)為全屏幕形式,用點(diǎn)擊圖標(biāo)的形式演播。通過(guò)演示再將不合理的地方進(jìn)行修改,最后完成“引言”分課件的設(shè)計(jì)。
用同樣的方法制作好其余各分課件后,再在wps2000的操作向?qū)е袘?yīng)用其“ole對(duì)象”將各分課件連接起來(lái),構(gòu)成《勾股定理》課堂教學(xué)課件后,反復(fù)演示幾遍,修改調(diào)試直至能滿足課堂教學(xué)的要求,完成課件的制作。
課件制作完成,筆者將它拿到正式課堂里向?qū)W生一演示,引起不小的轟動(dòng),那堂課同學(xué)們聽(tīng)課特別地專注,課后作業(yè)也做得格外地好。
通過(guò)制作《勾股定理》課件,更深入地了解到wps2000軟件的強(qiáng)大功能,同時(shí)在制作教學(xué)課件的過(guò)程中,感到wps2000也還有如下方面值得改進(jìn):
3、改進(jìn)“演示”功能,增加調(diào)節(jié)演示對(duì)象次序的功能,添加平面“路徑動(dòng)畫”的功能。
以上僅是筆者個(gè)人意見(jiàn),提出來(lái)供大家討論。歡迎與筆者交流
點(diǎn)擊閱讀更多學(xué)院
勾股定理的說(shuō)課稿篇六
1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.
2、通過(guò)實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.
1.用面積的方法說(shuō)明勾股定理的正確.
2.勾股定理的應(yīng)用.
勾股定理的應(yīng)用.
一、學(xué)前準(zhǔn)備:
1、閱讀課本第46頁(yè)到第47頁(yè),完成下列問(wèn)題:
2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_(kāi)________________________,又可以表示為_(kāi)_________________________.對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說(shuō)明勾股定理是正確的方法(請(qǐng)逐一說(shuō)明)
二、合作探究:
(一)自學(xué)、相信自己:
(二)思索、交流:
(三)應(yīng)用、探究:
(四)鞏固練習(xí):
1、如圖,64、400分別為所在正方形的面積,則圖中字
母a所代表的正方形面積是_________。
三.學(xué)習(xí)體會(huì):
本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問(wèn)題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來(lái)解決。
2②圖
四.自我測(cè)試:
五.自我提高:
勾股定理的說(shuō)課稿篇七
1、知識(shí)與技能目標(biāo)
學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
2、過(guò)程與方法
(1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力。
(2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想。
3、情感態(tài)度與價(jià)值觀
(1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣。
(2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
教學(xué)重點(diǎn):
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題。
教學(xué)難點(diǎn):
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題。
教學(xué)準(zhǔn)備:
多媒體
教學(xué)過(guò)程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
情景:
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
教材23頁(yè)
李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務(wù)嗎?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)
2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問(wèn)答)
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問(wèn)題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
作業(yè):1.課本習(xí)題1.5第1,2,3題.
要求:a組(學(xué)優(yōu)生):1、2、3
b組(中等生):1、2
c組(后三分之一生):1
勾股定理的說(shuō)課稿篇八
中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:
周公問(wèn):“我聽(tīng)說(shuō)您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒(méi)有梯子可以上去,地也沒(méi)法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?”
商高回答說(shuō):“數(shù)的產(chǎn)生來(lái)源于對(duì)方和圓這些形體餓認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時(shí)候,那么它的斜邊‘弦’就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來(lái)的呵?!?/p>
從上面所引的這段對(duì)話中,我們可以清楚地看到,我國(guó)古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。
用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來(lái)表示斜邊,則可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實(shí),我國(guó)古代得到人民對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。如果說(shuō)大禹治水因年代久遠(yuǎn)而無(wú)法確切考證的話,那么周公與商高的.對(duì)話則可以確定在公元前1100年左右的西周時(shí)期,比畢達(dá)哥拉斯要早了五百多年。其中所說(shuō)的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理,應(yīng)該是非常恰當(dāng)?shù)摹?/p>
在稍后一點(diǎn)的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說(shuō);“把勾和股分別自乘,然后把它們的積加起來(lái),再進(jìn)行開(kāi)方,便可以得到弦。”把這段話列成算式,即為:
弦=(勾2+股2)(1/2)
亦即:
c=(a2+b2)(1/2)
中國(guó)古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。最早對(duì)勾股定理進(jìn)行證明的,是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。在這幅“勾股圓方圖”中,以弦為邊長(zhǎng)得到正方形abde是由4個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成的。每個(gè)直角三角形的面積為ab/2;中間懂得小正方形邊長(zhǎng)為b-a,則面積為(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2
化簡(jiǎn)后便可得:
a2+b2=c2
亦即:
c=(a2+b2)(1/2)
趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識(shí)。他用幾何圖形的截、割、拼、補(bǔ)來(lái)證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國(guó)古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。以后的數(shù)學(xué)家大多繼承了這一風(fēng)格并且代有發(fā)展。例如稍后一點(diǎn)的劉徽在證明勾股定理時(shí)也是用的以形證數(shù)的方法,只是具體圖形的分合移補(bǔ)略有不同而已。
中國(guó)古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位。尤其是其中體現(xiàn)出來(lái)的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。事實(shí)上,“形數(shù)統(tǒng)一”的思想方法正是數(shù)學(xué)發(fā)展的一個(gè)極其重要的條件。正如當(dāng)代中國(guó)數(shù)學(xué)家吳文俊所說(shuō):“在中國(guó)的傳統(tǒng)數(shù)學(xué)中,數(shù)量關(guān)系與空間形式往往是形影不離地并肩發(fā)展著的......十七世紀(jì)笛卡兒解析幾何的發(fā)明,正是中國(guó)這種傳統(tǒng)思想與方法在幾百年停頓后的重現(xiàn)與繼續(xù)?!薄?/p>
勾股定理的說(shuō)課稿篇九
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握勾股定理;
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過(guò)問(wèn)題的解決,提高學(xué)生的運(yùn)算能力
3、情感目標(biāo):
(1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)重點(diǎn):勾股定理及其應(yīng)用
教學(xué)難點(diǎn):通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過(guò)程:
1、新課背景知識(shí)復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問(wèn)題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語(yǔ)言將上述問(wèn)題表述出來(lái)。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
強(qiáng)調(diào)說(shuō)明:
(1)勾――最短的邊、股――較長(zhǎng)的直角邊、弦――斜邊
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問(wèn)題(待定)
3、定理的證明方法
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。
方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說(shuō)明
4、定理與逆定理的應(yīng)用
5、課堂小結(jié):
(1)勾股定理的內(nèi)容
(2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)p130#1、2、3
b、上交作業(yè)p132#1、3
勾股定理的說(shuō)課稿篇十
尊敬的各位考官:
大家好,我是x號(hào)考生,今天我說(shuō)課的題目是《勾股定理的逆定理》。
新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過(guò)程等幾個(gè)方面展開(kāi)我的說(shuō)課。
首先來(lái)談一談我對(duì)教材的理解。
本節(jié)課選自人教版初中數(shù)學(xué)八年級(jí)下冊(cè)第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時(shí)本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問(wèn)題的基礎(chǔ)理論性知識(shí)。
接下來(lái)談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識(shí),處于由幾何內(nèi)容的初級(jí)向高級(jí)行進(jìn)的過(guò)程。他們的幾何思維正在逐步形成和發(fā)展,對(duì)幾何題目具有一定的分析、想象、概括能力,具有對(duì)未知事物的新鮮感和探求欲。同時(shí)也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵(lì)與引導(dǎo)并重。
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下教學(xué)目標(biāo):
(一)知識(shí)與技能
理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
(二)過(guò)程與方法
經(jīng)歷得出猜想、推理證明的過(guò)程,提升自主探究、分析問(wèn)題、解決問(wèn)題的能力。
(三)情感、態(tài)度與價(jià)值觀
體會(huì)事物之間的聯(lián)系,感受幾何的魅力。
在教學(xué)目標(biāo)的實(shí)現(xiàn)過(guò)程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。
為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。
下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。
(一)導(dǎo)入新課
課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問(wèn)學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時(shí)我會(huì)要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。
通過(guò)這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時(shí)用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開(kāi)教學(xué)。
(二)講解新知
接下來(lái)是最重要的新授環(huán)節(jié)。
請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。
勾股定理的說(shuō)課稿篇十一
教材所處的地位與作用
“探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容。“勾股定理”是安排在學(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。
綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:
知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。
掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。
在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問(wèn)題的能力。
通過(guò)觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程。
介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛(ài)國(guó)情感。
本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。
本 節(jié)主要攻克的問(wèn)題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說(shuō), 有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。
[教學(xué)方法與手段] 針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。
[學(xué)法分析] 在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。
本節(jié)課開(kāi)始利用多媒體介紹了在北京召開(kāi)的20xx年 國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)。“好的開(kāi)始是成功的一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué) 生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。
讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié) 論。最后對(duì)此結(jié)論通過(guò)在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過(guò)程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒(méi)法數(shù)出。通過(guò)同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過(guò)割補(bǔ)變?yōu)橐?guī)則。
因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。
這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。
5、自己動(dòng)手,拼出弦圖
讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的 直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。
6、總結(jié)反思
通 過(guò)這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方 法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過(guò)讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn) 室”,學(xué)生通過(guò)自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。
1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。
勾股定理的說(shuō)課稿篇十二
各位專家領(lǐng)導(dǎo),上午好:
今天我說(shuō)課的課題是《勾股定理的逆定理》
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。
知識(shí)技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形
過(guò)程與方法:
1、通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過(guò)程
2、通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用
3、通過(guò)勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題。
情感態(tài)度:
盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):勾股定理逆定理的應(yīng)用
難點(diǎn):勾股定理逆定理的證明
關(guān)鍵:輔助線的添法探索
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。
一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
本著由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問(wèn)題的方法是培養(yǎng)我們發(fā)現(xiàn)問(wèn)題認(rèn)識(shí)問(wèn)題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。a組是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。b組題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。
總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。
勾股定理的說(shuō)課稿篇十三
勾股定理就是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它就是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,這就是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。
教學(xué)難點(diǎn):勾股定理的證明。
教法和學(xué)法就是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
3、通過(guò)演示實(shí)物,要引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
教師是指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,這也體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
(1)這兩個(gè)圖形有什么特點(diǎn)呢?
(2)你能寫出這兩個(gè)圖形的面積嗎?
(3)如何運(yùn)用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。
1、出示練習(xí),學(xué)生分組來(lái)解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。
勾股定理的說(shuō)課稿篇十四
初略統(tǒng)計(jì),何老師在課堂上,共提出以下8個(gè)問(wèn)題:
(1)在一般的直角三角形中,有這樣的結(jié)論成立嗎?
(2)勾股定理的使用前提是什么?
(3)使用勾股定理,需要弄清楚什么?
(4)為什么用減法?(在勾股定理的簡(jiǎn)單應(yīng)用這一環(huán)節(jié),用到
勾股定理的變式)
(5)我們是否應(yīng)該在這個(gè)表格中創(chuàng)造直角三角形呢?(引導(dǎo)學(xué)
生創(chuàng)造勾股定理的使用條件)
(6)那你還能創(chuàng)造出其它勾股數(shù)嗎?
(7)怎么理解東南方向、東北方向?
(8)勾股定理,難道只是為了求斜邊嗎?(在本課小結(jié)環(huán)節(jié))
以上八個(gè)問(wèn)題環(huán)環(huán)緊扣,出現(xiàn)的時(shí)機(jī)恰到好處。比如,在應(yīng)用勾股定理時(shí),沒(méi)有現(xiàn)成的直角三角形,學(xué)生無(wú)從下手。何老師,不失時(shí)機(jī)地問(wèn)了一句:是否應(yīng)該構(gòu)造一個(gè)直角三角形呢?這樣一個(gè)問(wèn)題,既非常好地點(diǎn)撥了學(xué)生,又讓學(xué)生深刻地領(lǐng)悟到了勾股定理的使用是有條件的。
發(fā)現(xiàn)定理到證明定理,再到應(yīng)用定理,板塊分明,學(xué)生聽(tīng)的真切。思路清晰,三個(gè)情景:蝸牛爬行、小鳥(niǎo)飛行、輪船航海,貫穿整個(gè)課堂,從三個(gè)情景里模糊感知定理,從三個(gè)情景里充分應(yīng)用定理,并擴(kuò)充延展定理。
蝸牛爬行涉及到直角三角形的構(gòu)造,回答了第2個(gè)問(wèn)題;小鳥(niǎo)飛行涉及到勾和股的確定,回答了第3個(gè)問(wèn)題;輪船航海涉及到直角三角形的尋找。
如果我是一名學(xué)生,很愿意跟著何老師學(xué)習(xí)。他有種讓學(xué)生很安心很靜心的能力,讓學(xué)生有踏實(shí)感,覺(jué)得跟著這位老師學(xué)習(xí)一定能學(xué)到東西。
勾股定理的說(shuō)課稿篇十五
內(nèi)容:教材分析、教學(xué)過(guò)程設(shè)計(jì)、設(shè)計(jì)說(shuō)明
(一)教材所處的地位
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
1、能說(shuō)出勾股定理的內(nèi)容。
2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。
3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。
4、通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
(三)本課的教學(xué)重點(diǎn):探索勾股定理
本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。
教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
(一)提出問(wèn)題:
首先創(chuàng)設(shè)這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?問(wèn)題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問(wèn)題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。
(二)實(shí)驗(yàn)操作:
1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將c劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。
3、給出一個(gè)邊長(zhǎng)為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。
(三)歸納驗(yàn)證:
1、歸納通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。
2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測(cè)量、計(jì)算來(lái)驗(yàn)證結(jié)論的正確性。這一過(guò)程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育。
(四)問(wèn)題解決:
讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。
(五)課堂小結(jié):
主要通過(guò)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
(六)布置作業(yè):
課本p6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開(kāi)放題。
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問(wèn)題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開(kāi)放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開(kāi),既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。
勾股定理的說(shuō)課稿篇十六
中國(guó)是發(fā)現(xiàn)和研究勾股定理最古老的國(guó)家之一。中國(guó)古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據(jù)記載,商高(約公元前11)答周公曰“故折矩,以為勾廣三,股修四,徑隅五。既方之,外半其一矩,環(huán)而共盤,得成三四五。兩矩共長(zhǎng)二十有五,是謂積矩?!币虼耍垂啥ɡ碓谥袊?guó)又稱“商高定理”。在公元前7至6世紀(jì)一中國(guó)學(xué)者陳子,曾經(jīng)給出過(guò)任意直角三角形的三邊關(guān)系:以日下為勾,日高為股,勾、股各乘并開(kāi)方除之得斜至日。
2、主要意義
1、勾股定理是聯(lián)系數(shù)學(xué)中最基本也是最原始的兩個(gè)對(duì)象——數(shù)與形的第一定理。
2、勾股定理導(dǎo)致不可通約量的發(fā)現(xiàn),從而深刻揭示了數(shù)與量的區(qū)別,即所謂“無(wú)理數(shù)“與有理數(shù)的差別,這就是所謂第一次數(shù)學(xué)危機(jī)。
3、勾股定理開(kāi)始把數(shù)學(xué)由計(jì)算與測(cè)量的技術(shù)轉(zhuǎn)變?yōu)樽C明與推理的科學(xué)。
4、勾股定理中的公式是第一個(gè)不定方程,也是最早得出完整解答的不定方程,它一方面引導(dǎo)到各式各樣的不定方程,另一方面也為不定方程的解題程序樹(shù)立了一個(gè)范式。
勾股定理的說(shuō)課稿篇十七
1、教材分析
本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過(guò)20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問(wèn)題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來(lái),它有著豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析
通過(guò)前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識(shí),能夠進(jìn)行一般的推理和論證,但如何通過(guò)拼圖來(lái)證明勾股定理,學(xué)生對(duì)這種解決問(wèn)題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂(lè)趣。
3、教學(xué)目標(biāo):
根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):
過(guò)程與方法目標(biāo):通過(guò)創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問(wèn)題,運(yùn)用了觀察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。
情感態(tài)度價(jià)值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學(xué)
重難點(diǎn)為探索和證明勾股定理.
根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過(guò)程中,以創(chuàng)設(shè)問(wèn)題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。
1、教法
“教必有法,而教無(wú)定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。
2、學(xué)法
“授人以魚,不如授人以漁”,通過(guò)設(shè)計(jì)問(wèn)題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學(xué)模式
根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。
(一)創(chuàng)設(shè)情境,引入新課
利用多媒體課件,給學(xué)生出示20xx年國(guó)際數(shù)學(xué)家大會(huì)的場(chǎng)面,通過(guò)觀察會(huì)徽?qǐng)D案,提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。
(二)引導(dǎo)學(xué)生,探究新知
1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問(wèn)題:現(xiàn)在也請(qǐng)你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問(wèn)題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長(zhǎng)為1、2時(shí),所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。
2、提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明.通過(guò)活動(dòng)3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問(wèn)題的多種方法,鼓勵(lì)創(chuàng)新,小組競(jìng)賽,引入競(jìng)爭(zhēng),教師參與討論,與學(xué)生交流,獲取信息,從而有針對(duì)性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過(guò)程中,感受到自我創(chuàng)造的快樂(lè),從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問(wèn)題的能力。
4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語(yǔ)言表達(dá)能力和歸納概括能力。
(三)反饋訓(xùn)練,鞏固新知
學(xué)生對(duì)所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測(cè)學(xué)生對(duì)本課目標(biāo)的達(dá)成情況和加強(qiáng)對(duì)學(xué)生能力的培養(yǎng),設(shè)計(jì)一組有坡度的練習(xí)題:a組動(dòng)腦筋,想一想,是本節(jié)基礎(chǔ)知識(shí)的理解和直接應(yīng)用;b組求陰影部分的面積,建立了新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。c組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會(huì),讓學(xué)生獨(dú)立思考后,討論交流得出解決問(wèn)題的方法,增強(qiáng)了數(shù)學(xué)來(lái)源于實(shí)踐,反過(guò)來(lái)又作用于實(shí)踐的應(yīng)用意識(shí),達(dá)到了學(xué)以致用的目的。
(四)歸納小結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么?通過(guò)小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。
(五)布置作業(yè),拓展新知
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。
(六)板書設(shè)計(jì),明確新知
本節(jié)課的板書設(shè)計(jì)分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。
勾股定理的說(shuō)課稿篇十八
聽(tīng)了何老師的勾股定理,感觸比較多。整節(jié)課,可以說(shuō)是化繁為簡(jiǎn)、重點(diǎn)突出、條理清晰、層次分明。
讓我印象最深刻,也是值得我學(xué)習(xí)的地方,應(yīng)該是利用正方形的面積來(lái)推導(dǎo)勾股定理這一部分,這也是本節(jié)課的難點(diǎn)與重點(diǎn)。從找正方形面積之間的關(guān)系,來(lái)推導(dǎo)出中間所圍的三角形三邊之間的關(guān)系,無(wú)疑是一個(gè)很巧妙的思維,在網(wǎng)格中找正方形面積的時(shí)候,學(xué)生可以充分利用所學(xué)過(guò)的割補(bǔ)法的知識(shí),用不同的方法,得到面積,思維上得到了發(fā)散。接下來(lái)利用了一個(gè)有效的設(shè)問(wèn)“對(duì)于等腰直角三角形三邊所滿足的這一關(guān)系,是否一般的直角三角形也滿足呢?聚攏了發(fā)散的思維,并明確了勾股定理。整個(gè)過(guò)程條理清晰、層次分明,學(xué)生在一步一步的探索中學(xué)到了新的`知識(shí)。符合學(xué)生的認(rèn)知水平。
練習(xí)分為兩部分,第一部分是:蝸牛的行走路徑、小鳥(niǎo)飛行路程、輪船航行。這一部分在課程開(kāi)始時(shí),以動(dòng)畫的形式吸引學(xué)生的注意,并設(shè)置了求解的疑問(wèn),在勾股定理明確之后,讓學(xué)生做、學(xué)生講解、老師點(diǎn)撥。從中加深學(xué)生對(duì)勾股定理的印象:一是一定要在直角三角形中使用,如果沒(méi)有直角三角形,則首先要構(gòu)造出直角三角形。二是,得到了三組勾股數(shù),為勾股數(shù)的規(guī)律做鋪墊。第二部分的練習(xí)是給學(xué)生們課下練習(xí)的。
整個(gè)課堂中,教師的教學(xué)功底通過(guò)對(duì)課堂節(jié)奏的掌控、教師用語(yǔ)的提煉、ppt技巧的掌握得到了充分的展現(xiàn)。很值得我學(xué)習(xí)!
勾股定理的說(shuō)課稿篇十九
(一)、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo)
1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;
2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;3知道什么叫勾股數(shù),記住一些覺(jué)見(jiàn)的勾股數(shù).
2、過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過(guò)程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。
3、情感、態(tài)度價(jià)值觀培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
(三)、學(xué)情分析:
教學(xué)難點(diǎn):勾股定理逆定理的證明
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。
(一)復(fù)習(xí)回顧
復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。
(二)創(chuàng)設(shè)問(wèn)題情境
造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)學(xué)生在教師的指導(dǎo)下嘗試解決問(wèn)題,總結(jié)規(guī)律(包括難點(diǎn)突破)
因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的.,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)組織變式訓(xùn)練
本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。
(五)歸納小結(jié),納入知識(shí)體系
告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問(wèn)題的方法是培養(yǎng)我們發(fā)現(xiàn)問(wèn)題認(rèn)識(shí)問(wèn)題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
(六)作業(yè)布置
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。
總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點(diǎn)擊下載文檔
搜索文檔
您可能關(guān)注的文檔
- 最新家長(zhǎng)評(píng)語(yǔ)小學(xué)生評(píng)語(yǔ) 小學(xué)生素質(zhì)家長(zhǎng)評(píng)語(yǔ)家長(zhǎng)評(píng)語(yǔ)(優(yōu)秀19篇)
- 最新材料類專業(yè)就業(yè)方向及前景 材料專業(yè)求職信(實(shí)用9篇)
- 最新形勢(shì)與政策論文中國(guó)夢(mèng)(實(shí)用10篇)
- 學(xué)校保護(hù)環(huán)境倡議書(實(shí)用16篇)
- 最新大蒜觀察日記七天帶圖 大蒜觀察日記(精選17篇)
- 秋天山景的句子有哪些 秋天山頂景色的句子(精選10篇)
- 學(xué)校保護(hù)環(huán)境倡議書六年級(jí)(模板8篇)
- 最新駱駝祥子讀書心得(通用14篇)
- 最新銷售個(gè)人工作總結(jié)個(gè)人 銷售個(gè)人工作總結(jié)(優(yōu)秀13篇)
- 度教學(xué)工作總結(jié) 年度教學(xué)工作總結(jié)(通用18篇)
- 學(xué)生會(huì)秘書處的職責(zé)和工作總結(jié)(專業(yè)17篇)
- 教育工作者分享故事的感悟(熱門18篇)
- 學(xué)生在大學(xué)學(xué)生會(huì)秘書處的工作總結(jié)大全(15篇)
- 行政助理的自我介紹(專業(yè)19篇)
- 職業(yè)顧問(wèn)的職業(yè)發(fā)展心得(精選19篇)
- 法治興則民族興的實(shí)用心得體會(huì)(通用15篇)
- 教師在社區(qū)團(tuán)委的工作總結(jié)(模板19篇)
- 教育工作者的社區(qū)團(tuán)委工作總結(jié)(優(yōu)質(zhì)22篇)
- 體育教練軍訓(xùn)心得體會(huì)(優(yōu)秀19篇)
- 學(xué)生軍訓(xùn)心得體會(huì)范文(21篇)
- 青年軍訓(xùn)第二天心得(實(shí)用18篇)
- 警察慰問(wèn)春節(jié)虎年家屬的慰問(wèn)信(優(yōu)秀18篇)
- 家屬慰問(wèn)春節(jié)虎年的慰問(wèn)信(實(shí)用20篇)
- 公務(wù)員慰問(wèn)春節(jié)虎年家屬的慰問(wèn)信(優(yōu)質(zhì)21篇)
- 植物生物學(xué)課程心得體會(huì)(專業(yè)20篇)
- 政府官員參與新冠肺炎疫情防控工作方案的重要性(匯總23篇)
- 大學(xué)生創(chuàng)業(yè)計(jì)劃競(jìng)賽范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 編輯教學(xué)秘書的工作總結(jié)(匯總17篇)
- 學(xué)校行政人員行政工作職責(zé)大全(18篇)